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SUMMARY

This paper presents a novel approach to simulate aerodynamically generated sounds by modifying the finite
difference-based lattice BGK compressible fluid model for the purpose of speeding up the calculation and
also stabilizing the numerical scheme. With the model, aerodynamic sounds generated by a uniform flow
around a two-dimensional circular cylinder at Re= 150 are simulated. The third-order-accurate up-wind
scheme is used for the spatial derivatives, and the second-order-accurate Runge–Kutta method is applied for
the time marching. The results show that we successively capture very small acoustic pressure fluctuations,
with the same frequency of the Karman vortex street, much smaller than the whole pressure fluctuation
around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak
pressure are biased upstream owing to the Doppler effect in the uniform flow. For the downstream, on the
other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r−1/2,
r being the distance from the centre of the circular cylinder. Moreover, the edgetone generated by a two-
dimensional jet impinging on a wedge to predict the frequency characteristics of the discrete oscillations
of a jet-edge feedback cycle is investigated. The jet is chosen long enough to guarantee the parabolic
velocity profile of the jet at the outlet, and the edge is of an angle of �= 23◦. At a stand-off distance w,
the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency is
assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We
have succeeded in capturing small pressure fluctuations resulting from periodic oscillation of jet around
the edge. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Works in the field of computational aeroacoustics have been developed via direct simulation
by applying a large amount of calculation resources. Especially, with the increase of speed of
transport vehicles like airplane, automobiles, and trains in recent years, flow noise has become a
large environmental problem. There are two kinds of noise: vibration noise created by the vibration
of object, and aerodynamic noise produced by the unsteady motion of fluid. The energy of sound
due to the object vibration is proportional to O(10−2) of the momentum energy �u2/2 while the
aerodynamic noise is proportional to O(10−5.10−8). Understanding the aerodynamic noise by
analysing its mechanism is therefore difficult. In the numerical research of the aerodynamic sound,
it can be possible to analyse the information of the detailed flow field, which is not obtained
in the experiments, by directly solving the compressible Navier–Stokes equation. However, in
studying the aerodynamic sound by the numerical method, a number of things are necessary:
a highly accurate scheme to realize the sound pressure (O(10−4)) against the static pressure;
a wide calculation area to obtain far away sound pressure field; and removal of the numerical
reflection at the boundary.

The flow around a circular cylinder [1, 2] or an airfoil [3] has been studied experimentally and
numerically for quite a while because it is one of the abundant phenomena of the fundamental
fluid mechanics. Yet, in spite of its simplicity, a lot of unsolved problems still exist. One of them
is the generation mechanism of acoustic waves by the flow around the cylinder. This has also
been studied experimentally and numerically to some extent. The numerical analyses has been
done in the conventional way that a vorticity dominant near field is simulated first and then an
acoustic far field is obtained using approximated equations derived from the acoustic analogy
[4]. So far most of the computational work on the sound generation due to flow past a circular
cylinder has been done using the hybrid method [5], acoustic/viscous splitting methods [6, 7] and
the direct numerical simulation (DNS) [8, 9]. Furthermore, in the edgetone, a discrete frequency
sound is produced by several flow geometries in which a free shear layer interacts with a solid
boundary. One well-known device which produces discrete frequency sound in this way is the
edge tone. Its sound is generated because the impinging jet forms a self-excited flow maintained
by a feedback loop. Particularly obvious are the main features by the simplifying considerations
first stated by Powell [10, 11]. This edgetone is an effective device for transforming the energy
of the jet into acoustic radiation at a discrete frequency, and it is used as the source, which is
coupled to a resonator in several wind instruments. Since the last century the edgetone has been
the subject of a large number of both experimental and theoretical investigations. Some books and
reviews on edgetones are found in this fields [12–14]. In his experimental investigation, Brown
[12] encompasses four stages of edgetone and shows that an alternating vortex street is formed in
the jet. Holger et al. [13] examined the jet-edge interaction mechanism by considering a flat plate
place with a fully developed vortex street, and Crighton [14] performed to a linear analysis to
predict the frequency characteristics of the feedback cycle. Moreover, two-dimensional numerical
simulation on an edgetone and the associated self-sustained flows were reported by Ohring [15],
Benard [16] and Park and Lee [17]. However, in the fields stated above, the studies applying the
lattice Boltzmann method are recently developed by Buick et al. [18] and Tsutahara et al. [19].

In the present work we propose a modified model using the lattice BGK 21-velocity compressible
fluid model in FDLBM to speed up the calculation and also to stabilize the numerical scheme
through a simple shock tube problem. With the model, we simulate the generation and propagation
mechanism of the acoustic waves produced by a turbulent wake of a circular cylinder in a uniform

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:629–650
DOI: 10.1002/fld



APPLICATION OF THE FINITE DIFFERENCE-BASED LATTICE BOLTZMANN MODEL 631

flow at low Reynolds number. The predicted sound spectra with the vortex/flow dynamics are
clarified and the effect of the Mach number using the sound velocity is also examined. To examine
the characteristic of the lattice dependence, we also investigate 2D computations of the tone
noise radiated by an airfoil (NACA0012) with a blunt trailing edge at high incidence and low
Reynolds number. Finally, we extend our model to the onset issue for an edge tone generated
by a two-dimensional jet impinging on a wedge to predict the frequency characteristics of the
discrete oscillations of a jet-edge feedback cycle. As a result, the model can be easily used to
simulate a complex fluid flows and associated transport phenomena including a shock-capturing
and aeroacoustics.

2. COMPUTATIONAL METHODOLOGY

Developed from the lattice gas automata (LGA or lattice gas cellular automaton, LGCA) model
[20], the lattice Boltmzan method (LBM) [21–23] is a quite recent approach for simulating fluid
flow, which has been proven to be a valid and efficient tool in a variety of complex flow problems.
Considered an attractive alternative to conventional finite-difference schemes because it recovers
the Navier–Stokes equations, the lattice Boltzmann method is computationally more stable, and
easily parallelizable. In traditional numerical methods, the macroscopic variables are obtained by
solving the Navier–Stokes equations. But the LBM solves the microscopic kinetic equation for
particle distribution function from which the particles move at unit speed on a regular grid subject
to particle movement and simplified collision rules which conserve the total fluid mass, momen-
tum and energy. The presently popular method uses regularly spaced lattices and cannot handle
curved boundaries with desirable flexibility. To circumvent such difficulties, the finite difference-
based lattice Boltzmann method (FDLBM) [24, 25] in curvilinear coordinates is explored using
body-fitted coordinates with nonuniform grids [26]. The method makes it possible and easy to
simulate the complicated object shapes, and the application to various flow fields is attained. This
method has high flexibility for coordinate system selection and is often the choice among various
schemes.

The Boltzmann equation governing the velocity distribution function fi may be written, with a
single relaxation time �, as

� fi
�t

+ ci · ∇ fi =− 1

�
( fi − f eqi ) (1)

Here, the real number fi is the normalized number of particles at each lattice node and time t ,
moving in direction i . The microscopic dynamics associated with Equation (1) can be viewed as
a two-step process of movement and collision. In the collision step, the distribution functions at
each site relax toward a state of local equilibrium. The form of RHS term, given in Equation (1),
represents a relaxation of the distribution towards its equilibrium value and recovers the nonlinear
form of the fluid, ensuring that the fully nonlinear Navier–Stokes equation is satisfied. The equi-
librium distribution functions f eqi depend on the fluid density �, velocity u, and internal energy
e, at each site which can be calculated from the distribution functions as

� =∑
i

fi (2)

�u=∑
i
ci fi (3)
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(m,k)=(2,2)

(m,k)=(2,1)

(m,k)=(1,1) (1,2) (1,3)

Figure 1. A compressible lattice Boltzmann model (D2Q21). The index m = 1 indicates the particle which
moves in the orthogonal direction and m = 2 indicates the particle which moves in the diagonal direction.

The k represents the speed of particle which moves in the nearest neighbouring lattice.

and

�e=∑
i

1

2
c2 fi − 1

2
�u2 (4)

Up to O(u3), we assume that the equilibrium distribution function is expressed as

f eqi = Fi�
[
1 − 2Bci�u� + 2B2(ci�u�) + Bu2 − 4

3 B
3(ci�u�) − 2B2ci�u�u

2
]

(5)

where the Greek subscripts represent vector components. The moving particles are allowed to
move with five kinds of speed, c, 2c, 3c,

√
2c, and 2

√
2c, and the particles are 21 kinds, as shown

in Figure 1. The functions Fi and B, respectively, are determined by

F1 = 1 + 5

4Bc2

(
17

96B2c4
+ 35

48Bc2
+ 49

45

)
(6)

F2.5 = − 1

8Bc2

(
13

16B2c4
+ 71

24Bc2
+ 3

)
(7)

F6.9 = 1

16Bc2

(
5

16B2c4
+ 25

24Bc2
+ 3

5

)
(8)
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F10.13 =− 1

24Bc2

(
1

16B2c4
+ 1

8Bc2
+ 1

15

)
(9)

F14.17 = 1

4B3c6

(
Bc2

3
+ 1

8

)
(10)

F18.21 = − 1

153B3c6
(2Bc2 + 3) (11)

B = − 1

2e
(12)

The models for compressible fluids are sometimes unstable in calculation. However, by using
the finite difference, it stabilizes the calculation considerably. For this purpose, this paper employs
the discretized BGK equation (1). This equation is shown to lead the Navier–Stokes equations by
the Chapman–Enskog expansion, and the term (� − 1/2) in transfer coefficient changes into �.
The relationship between the kinematic viscosity and relaxation time factor becomes

� = 2

D
�e� (13)

Here, D is the characteristic dimension and the value of D is 2 for two-dimensional case. For
high Reynolds number flows which are important in engineering fields, � � 1 must be satis-
fied. If Euler’s first-order forward difference scheme is used for time integral, the equation is
transformed as

f n+1
i = f ni + �t

[
−ci�

� f ni
�x�

− 1

�
( f ni − f eqi )

]
(14)

where �t is the time increment. In Equation (14), the condition of stability for the collision term
must be satisfied �t/�<2.0, which states that the distribution function approaches its equilibrium
state by every collision. Relations between � and �t/� lead that, for high Reynolds number flows,
the time increment chosen must be small and the calculation time will be very long. Therefore,
an equation in which the third term is added to the discretized BGK equation (Equation (1)) is
transformed

� fi
�t

+ ci�
� fi
�x�

− Aci�
�

�x�

(
fi − f eqi

�

)
= − 1

�
( fi − f eqi ) (15)

where A(>0) is a constant. Then the relationship is changed as follows:

� = 2

D
�e(� − A) (16)

By conducting such conversion, it is possible to modify the relationship between the coefficient
of the kinematic viscosity and the single relaxation coefficient � ∼ � to �→ A ∼ � in FDLBM.
Therefore, the single relaxation coefficient � becomes �→ � − A in the flow of high Reynolds
number, and the transformed model of FDLBM makes it possible to calculate with the fixed value
of � which is taken in high Reynolds number flows. Furthermore, it becomes possible that the
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calculation of �t can easily or stably simulate up to large value, while �t/�= 2.0 is an upper
limit for the collision term in the conventional FDLBM model.

The macroscopic equations can be derived from the lattice Boltzmann equations by conducting
multi-scale expansions in the time and space derivatives such that

�
�t

→ �
�

�t1
+ �2

�
�t2

(17)

�
�x�

→ �
�

�x1�
(18)

and the distribution function is expanded in powers of � as

fi = f eqi + � f (1)
i + �2 f (2)

i + · · · (19)

where � is the Knudsen number which must be small. Substituting the expression for the equilibrium
distribution functions of Equation (5), the Chapman–Enskog expansions of Equations (17)–(19),
the Navier–Stokes equations are obtained as

��

�t
+ ��u�

�x1�
= 0 (20)

��u�

�t
+ ��u�u�

�x�
= − �p

�x�
+ �

�x�
�

(
�u�

�x�
+ �u�

�x�

)
+ �

�x�

(
�
�u�

�x�

)
(21)

�
�t

�

(
1

2
u2 + e

)
+ �

�x�

(
1

2
u2 + e + p

�

)
�u�

= �
�x�

(
	′ �e

�x�

)
+ �

�x�

[
�u�

(
�u�

�x�
+ �u�

�x�

)]
+ �

�x�

(
�u�

�u�

�x�

)
(22)

The pressure, the second viscosity, the conductivity of internal energy and the speed of sound are
given, respectively, by

p= 2

D
�e (23)

� =− 4

D2
�e(� − A) (24)

	′ = 2(D + 2)

D2
�e(� − A) (25)

and

as =
√
2(D + 2)

D2
e (26)
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3. NUMERICAL ACCURACY

This section discusses the calculation speed-up, which becomes possible by modifying the
relationship between the viscosity coefficient � and single relaxation coefficient � by adding
the term in Equation (15). To begin with, when the high Reynolds number is considered, it is the
major difference between the modified FDLBM model and the conventional FDLBM model in
Equation (1) that as Re→ ∞ the relaxation time �→ 0.0 in the conventional FDLBM, whereas
� → A in the modified model. From this fact, the calculation stability to satisfy the condition
�t/�<2.0, which is a condition of the coefficient depending on the collision term, could not be
achieved if �t → 0 is not given in the conventional FDLBM. In the modified FDLBM, however,
the time becomes �t → 2.0 · A. Therefore, we can easily promote the calculation stability in �t
to some extent in size.

To examine the validity of the modified FDLBM, we use both the conventional model and
the modified model by considering the characteristics of the shock wave and the reflection wave.
A conceptual scheme of a shock tube is shown in Figure 2. The shock tube is a device in which
normal shock waves are generated by the rupture of a diaphragm initially separating a high-
pressure chamber from the low-pressure chamber. Upon rupturing the diaphragm, a normal shock
wave moves into the low-pressure side, with a series of expansion waves propagating into the
high-pressure side. The speed of shock cs is defined as cs = Msasf, where Ms is the shock Mach
number. The fundamental equation of shock tube can be written as

p4
p1

= p2
p1

[
1 − (
4 − 1)(asf/asr)(p2/p1)√

2
1
√
2
1 + (
1 + 1)(p2/p1 − 1)

]−2
4/(
4−1)

(27)

where asf, asr are the front and rear sound velocity of shock wave, respectively.

Figure 2. Simulated flow field in a shock tube.
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Figure 3. (a) Flow field in a shock tube simulated with D2Q21 model by the conventional
FDLBM; and (b) the modified FDLBM.
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Figure 4. (a) Comparisons of the pressures at the front and rear of shock wave; and (b) the speed of shock
with theoretical prediction by the modified FDLBM.

As for the initial parameters, if we set the initial pressure ratio in p4/p1 = 7.0, the time increment
�t = 0.01 and the internal energy in both partitions e1 = e4 = 0.85, the shockMach number becomes
Ms = 1.645. The simulated pressure distributions after the diaphragm are shown in Figure 3(a).
It should be noted that the pressure ratio over 7.0 is not completed by applying the conventional
FDLB model while, in the case of the modified model in Equation (15), we put the initial pressure
ratio in p4/p1 = 25.0, the time �t = 0.1 as the initial conditions, and the shock Mach number is
Ms = 2.215. The simulated flow fields are shown in Figure 3(b). Here, it is certainly noted that the
calculation with the modified model is stably completed even for the pressure ratios p4/p1 three
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times as high as those in the cases of the conventional model. Furthermore, in the cases shown in
Figures 3(a) and (b), the modified model is capable of speeding up the calculation time over 10
times faster than that of the conventional model.

Figure 4(a) shows the relation between the initial pressure ratio and the pressure ratio of the front
and the behind of shock wave. In this case, we estimate the error is within 0.02% and the results
also agree well with the theoretical predictions. Figure 4(b) shows that the difference between the
theoretical shock speed and the calculated shock speed is within 1.24%.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. Aeolian tone

A dipole sound from a flow around a circular cylinder in a 2D uniform flow by Karman vortex
shedding is considered for validation of the modified finite difference-based lattice Boltzmann
model in Equation (15) described in Section 2. A schematic diagram of the uniform flow of the
velocity U0 in the x direction of Cartesian coordinates (x, y) and a circular cylinder are shown in
Figure 5(a). Normalized by the static sound velocity a0, the streamwise velocity is prescribed by the
M =U0/a0 =U0/

√
2e, where M is the Mach number. Furthermore, the cylinder of the diameter

d is fixed at the origin. The polar coordinates (r, �) are also used, where the azimuthal angle �
is defined from downstream in the counterclockwise direction. The Reynolds number, defined as
Re=U0d/�, where � is the kinematic viscosity, is equal to 150. In this study, solutions will be
directly be compared for Re= 150 with that of DNS. That is, the two-dimensional aeroacoustic
DNS results of the unsteady flow around a circular cylinder in a uniform cross-flow at Re= 150
calculated by Inoue [9] is chosen as the benchmark for the validation, under the premise that the
DNS result is accurate enough to simulate the physical phenomena.

For the entire field from near to far acoustic field, computations are carried out on a O-grid
configuration shown in Figure 5(b), where only one-quarter of the mesh lines for the radial direction

M
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x�
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d
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-200
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(a) (b)

Figure 5. (a) Schematic diagram of the flow field model; and (b) computational mesh for flow past
a circular cylinder. For clarity, only one in every four mesh lines for the radial direction is plotted.
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Figure 6. Time average pressure Cp at M = 0.2, 0.25, 0.3 and DNS
result (Inoue, 2002) at 0� �� �. Re= 150.

are plotted for clarity. The computational domain is set to a circle of r = 200d and is constructed
as follows: the total number of the grid points is 24 321, 201 (r -direction)× 121 (�-direction); the
time increment �t is 0.02; and the examined Mach numbers use the sound velocity by changing
the internal energy e. All the calculations are in two-dimension and use D2Q21 model as shown in
Figure 1. Computations start with uniform velocity ui (T ( =Ut/d)= 0) = (U0, 0) everywhere. For
spatial derivatives, a third-order-accurate up-wind scheme (second-order-accurate at the boundary)
is used, and a second-order-accurate Runge–Kutta scheme is used for time integration. Adiabatic
and no-slip conditions are adopted on the cylinder surface. Along the O-grid shaped outer boundary
whose radius is r = 200d , the velocities (U0 = 0.2, 0.25 and 0.3) and internal energy e0 = 0.5 are set
at the freestream values, ui = (U0, 0), therefore the Mach number correspond to M = 0.2, 0.25 and
0.3. Because the boundary is sufficiently far away from the circular cylinder, the numerical wave
reflections from the boundary are removed [27]. The spacing in the surface region is prescribed
to be fine enough to analyse the boundary layer on the cylinder surface. The acquired data is set
forth sufficiently after the effect of the initial perturbation become negligible (T � 100).

Force acting on the cylinder surface as a function of the azimuthal angle � is presented in
Figure 6 for three different Mach numbers (M = 0.2, 0.25 and 0.3), and compared with that of
DNS result [9]. Pressure coefficient Cp is the time averaged pressure on the cylinder surface
normalized by the value at the stagnation point � = 0◦, and defined as follows.

Cp = p − p0
1/2�0U 2

(28)

Here, p0 denotes the ambient pressure. From the figure, it shows that the coefficient Cp is not
affected significantly by the Mach number. A comparison of the pressure coefficient at 0� � � �
for M = 0.2 also indicates that FDLBM is compatible with DNS.

In the near-field flow structure, lift force CL acting on the cylinder surface and pressure vari-
ations are plotted in Figure 7 for the case of M = 0.2 (e= 0.5). Here, the sound pressure �p is
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Figure 7. (a) Lift force acting on the cylinder surface; and (b) time history of the sound pressure. M = 0.2,
Re= 150. Arrows indicate T = 127, d = 50; solid line �= 90◦; dotted line �= −90◦.

defined as
�p= (p − p0)/p0 (29)

The time history of sound pressure at the point d = 50 and � = ±90◦ is shown in Figure 7(b). By
comparing with the lift coefficient CL in Figure 7(a), during the period T ( =Ut/d) = 120.150, it
can be seen that the period of CL oscillates equal to the period of �p. And positive peaks of CL
also coincide with the positive and negative peaks of �p�=±90. In this case, the Strouhal number
is defined by St = f d/U where f is the frequency of the periodic vortex shedding. It is evaluated
as St = 0.177, which is close to the experimental value (0.18 in Williamson) [28] and DNS result
(0.183 in Inoue and Hatakeyama) [9].

Instantaneous distribution of the acoustic pressures measured at � = 90◦ and the point d = 100
on the line perpendicular to the flow from the cylinder centre are given in Figure 8. In DNS by
Inoue, the two-dimensional unsteady compressible Navier–Stokes equations were solved by a six-
order-accurate compact Pade scheme for spatial derivatives and fourth-order Runge–Kutta scheme
for time integration. The number of the grid is 438113, 871 (r -direction) × 503 (�-direction). The
Reynolds number is 150 and the Mach number is 0.2 for both cases. These two results are similar
to them of Inoue and Hatakeyama [9]. However, such a DNS of aeroacoustic phenomena requires
a large amount of computer resources, even though it is only two-dimensional. From Figures 7
and 8, this means that the current our simulation is much cheaper with respect to the computational
costs than the acoustic of DNS, but it gives also a similar prediction to the DNS.

Figure 9 shows the acoustic pressure field at T = 132 for three different Mach numbers (M = 0.2,
0.25, and 0.3), where the contour level fluctuates at �pstep = 3×10−4, 7.5×10−3 and 1.0×10−3,
respectively. The solid lines indicate the positive pressures and the dashed lines are the negative
ones. As can be seen from this figure, rarefaction waves with negative �p and compression
waves with positive �p are generated alternately around the cylinder at the origin, and propagate
downstream and upstream, respectively.

Table I shows the difference between the theoretical prediction and the calculated value of the
propagation speed. At all directions, the propagation speeds vary a� = as −U0 cos � by mean flow
of the medium. In this case, the estimated error is within 2.1% and the results agree well with the
theoretical predictions.
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Figure 9. Contours of sound pressure at T = 132 and Re= 150 for three different Mach numbers. The
contour level fluctuates at �pstep = 3×10−4, 7.5×10−3, and 1.0×10−3, respectively. Solid lines: positive,

dotted lines: negative: (a) M = 0.2; (b) M = 0.25; and (c) M = 0.3.

Figure 10 illustrates distributions and decays of the sound pressure plotted along the three differ-
ent angles (�= 45◦, 90◦ and 135◦) for the case of Re= 150 and M = 0.2. The distributions of �p
are plotted against the radial distance r from the origin at the three different times T = 130, 131
and 132. Each peak of the waves is found to propagate and decay. The propagation speed of

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:629–650
DOI: 10.1002/fld



APPLICATION OF THE FINITE DIFFERENCE-BASED LATTICE BOLTZMANN MODEL 641

Table I. Numerical results of sound at each directon (M = 0.2).

� cos � a′
� = a�/U0 �r �r/a′

�

45 0.707 4.293 4.277 0.996
90 0.0 5.00 4.891 0.978

135 −0.707 5.707 5.585 0.979

Figure 10. Distributions and decays of sound pressure at three different directions.
M = 0.2. Re= 150: (a) � = 45◦; (b) �= 90◦; and (c) �= 135◦.

the waves is equal to the speed of sound in the far field, in agreement with the linear acoustic
theory. Also, the decaying curves are converged to the lines proportional to r−1/2 in the far field,
which is again in accordance with the theory. These results suggest that the sounds generated
from the cylinder at low Reynolds numbers are precisely captured by FDLBM if both the flow
dynamics in the near field and the wave propagations in the far field are computed with high
accuracy.

Furthermore, to validate the lattice dependence, we consider the unsteady flowfield and the
sound generated by a NACA0012 airfoil (see Figure 11) placed in a two-dimensional uniform
flow. The number of the grid is 62 307, 301(x)×207(y). The computational domain is a rectangle
(−17L � x � 18L and −17.5L � y � 17.5L) of a block structured H-grid system, where L is the
length of chord. x and y are the dimensionless coordinates nominated with the length of chord L
and with the origin at the start of airfoil. The grid spacing in the x- and y-directions are nonuniform.
The geometry of the computational domain and the coordinate system are shown in Figure 11.
The initial conditions are set to Re= 200, U0 = 0.2, M = 0.2 (e= 0.5) and an angle of attack is
given � = 14◦. All calculation conditions are the same in the case of the circular cylinder. The
solid lines indicate the positive pressures and the dashed lines are negative ones. As can be seen
from Figure 12, rarefaction waves with negative �p and compression waves with positive �p are
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Figure 11. (a) Schematic diagram of the flow field; and (b) computational mesh with NACA0012 (enlarged).
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Figure 12. Contours of sound pressure past a NACA0012 airfoil at
14◦ angle of attack. T = 156, Re= 200 and M = 0.2.

generated alternately around the NACA0012 airfoil at the origin, and it propagate downstream and
upstream, respectively. These results verify that the acoustic waves have an isotropic characteristic
regardless of the lattice shapes.
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Figure 13. Edgetone geometry.
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Figure 14. Computational grid for Edgetone of Re= 1000: (a) total mesh; and (b) mesh close to the edge.

4.2. Edge tone involving feedback

The calculation results at Mach number M = 0.2, U0 = 0.2 and Re= 1000 are described as shown
in Figures 13–20. The dimension of the edgetone is shown in Figure 13 and all the length scales
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Figure 15. Streamlines at three different instants for M = 0.2,U0 = 0.2 and Re= 1000:
(a) T (=Ut/d)= 20; (b) T (=Ut/d)= 260; and (c) T (=Ut/d)= 268.

are normalized by the width of nozzle d in the computation. Flows are assumed to be laminar
with the same incoming velocity. For the hydrodynamic and flow-induced noise calculations,
a computational domain is set for 0� x � 145d and 0� y � 240d (301 × 301 mesh cells; see
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Figure 16. Pressure distribution at two different instants (−0.015� �p� 0.015):
(a) T (=Ut/d)= 260; and (b) T (=Ut/d)= 268.
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Figure 17. Instantaneous plots of a vorticity field: (a) T (=Ut/d)= 260; and (b) T (=Ut/d)= 268.

Figure 14). Adiabatic and no-slip conditions are employed on the wedge and walls, and an outflow
condition is imposed on the outer far field boundary.

A jet which comes out of the nozzle first collides with the edge since a uniform flow as initial
condition without a turbulence is given, and the jet equally divided itself into the upper and lower
of the wedge as shown in Figure 15(a). Then, the jet begins to fluctuate, colliding with the edge. It
fluctuates upward and downward periodically. This fluctuation synchronizes with the period of the
vortex, which arises from the top and bottom wall in the vicinity of the nozzle exit. It is considered
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Figure 18. Acoustic pressure distribution (−0.001� �p� 0.002):
(a) T (=Ut/d)= 260; and (b) T (=Ut/d)= 268.

that, because of the vortex, the fluctuation of the jet is induced. Then with the effect of jet, the
vortex moves toward the downstream, and it undulates like the form of the jet by the rotation
energy. As a result, the jet changes its direction due to the rotation of vortex in the vicinity where
the vortex exceeded the tip of the wedge, and flows into a unilateral of the wedge, as shown in
Figures 15(b) and (c). Owing to the fluctuation of this jet as shown in Figure 15, the pressure on the
side exposing to the jet increases (Figure 16(b)) but, on the opposite side, the pressure decreases
(Figure 16(a)) periodically. In other words, the edgetone is generated because the impinging jet
forms a self-excited flow maintained by a feedback loop. As a result, on the upper and lower
parts of the edge, the pressure wave with an opposite phase is generated. It is shown that the
maximum pressure pmax and minimum pressure pmin have been observed to be pmax = 0.0345 and
pmin = −0.0289, respectively, at the vicinity of the edge as has been examined by Kayayoglu and
Rockwell [29]. This feature is to be explained by the antisymmetry of the downstream disturbance
about the central surface of jet.

Vortices in the jet impinge on to the surface of the wedge to produce a surface-pressure fluctuation
which propagates upstream at the speed of sound to the nozzle. At the outlet of the nozzle, this
pressure fluctuation produces vorticity fluctuation in the shear layers of the jet, modifying the
rolling up of the shear layers due to the instability. Figure 17 shows instantaneous plots of a
vorticity field. During the two periods, edge vortices are observed above and below the edge, being
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Figure 19. Phase diagram at two different positions.

180◦ out of phase to each other. In the figures, the vortex is below the edge during the downward
movement of the jet. In other words, the vortices in the shear layer impinge on the downstream
edge and induce large pressure oscillations, which become the major noise sources. At certain
conditions periodic movement due to positive feedback mechanism occurs, and it creates audible
acoustic pressure. In addition, since the sound radiation by the edge is proportional to the surface
pressure, the maximum pressure point can be regarded as the effective source point, though the
exact point can be somewhat different depending on the radiating direction.

Figure 18 shows the acoustic pressure field for two different instants (T =Ut/d = 260 and 268),
where the contour level �pstep fluctuates from −0.001 to 0.003. We can see in the figure that the
acoustic pressure of positive and negative propagates symmetrically in the upper and lower parts
of the wedge alternately. Figure 19 shows a phase diagram u1(x2, 0.6d) versus u1(x1, 0.6d) with
x2 a point w/5 left of x1. Here, we analysed the temporal behaviour of a typical quantity of the
flow at a fixed position x1 after computing for a sufficiently large number of periods. Here, we
used x1, a point w/5 left and slightly above the edge of the labium. For quantity we chose the
horizontal velocity component u1(x1, 0.6d) at x1, and it demonstrates the periodic behaviour of
the flow.

The time variations of the acoustic pressure at 6 points in calculating area are shown in Figure 20.
The observation points are radically considered on the edge tip, in which these points apart
from (109d,±100d), (109d,±20d) and (0d,±100d) in the x- and y-direction, respectively. The
solid line is the upper side of the wedge, and the dotted one is the lower side of the wedge,
and the sound signals fluctuate with a period of �T ( =Ut/d) = 16.51, which corresponds to
St ( = f d/U )= 0.061. Moreover, it can be confirmed that the amplitude of the fluctuations of the
acoustic pressure in the points is about 0.0025, and it has a more minute value than the pressure
fluctuation at the vicinity of the edge with 0.01.
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Figure 20. Time variation of acoustic pressure at three different positions:
(a) A1(109d,±100d); (b) A2(109d,±20d); and (c) A3(0d,±100d).

5. CONCLUSIONS

The use of a modified FDLB model of two-dimensional 21 velocity for simulating flow noise is
considered. The modified FDLB model demonstrated that the calculation in shock tube is stably
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completed even for the pressure ratio p4/p1 three times as high as those in the case of the
conventional model of Equation (1). Furthermore, the modified model is capable of speeding up
the simulation time over 10 times faster than that of the conventional model.

The flow-induced noise of self-sustained oscillatory flow at low Mach number was simulated
by using the modified FDLB model with the third-order-accurate up-wind scheme and the second-
order-accurate up-wind Runge–Kutta method. The sound frequency was the same as the vortex
shedding frequency of the Karman vortex street. The rarefaction waves and the compression waves
were alternately generated and propagated in the directions perpendicular to the uniform flow. The
sound pressure also decayed proportional to r−1/2 in the far acoustic field, which agreed with the
theoretical prediction. The analysis with the square cylinder and NACA0012 also elucidated that
the acoustic waves have an isotropic characteristic regardless of the lattice shapes.

The present method correctly predicted the frequency characteristics of the discrete oscillations
of a jet-edge feedback cycle at Re= 1000 and M = 0.1.0.3. We successfully captured small
pressure fluctuations resulting from periodically oscillation of jet around the edge with angle of
� = 23◦.
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